螺纹加工乱扣的解决思路案例描述:系统〇i Mate-TC,螺纹切削乱扣。故障分析:螺纹切削的原理:螺纹切削,是利用系统的每转进给方式,即伺服的进给量是按照主轴的旋转量来控 制的,主轴旋转一圈,Z轴的进给量按照指令的距离(螺距)进行进给,使主轴的 旋转与Z轴的进给保持同步。但是螺纹切削是多次的切削过程,要保证每次进刀的 位置都是同一个位置,这就需要螺纹切削的开始点和主轴的转角位置保持固定的某 一点。这一点是通过检测主轴编码器的一转信号来完成的。主轴编码器中的A/B信 号决定了进给的速度,Z相信号决定了螺纹的起刀点。
串行主轴设定画面上进行设定的项目一表项目名参数号简要说明备注电机型号No.4133电机型号参数值也可通过查阅主轴电机代码表,直接输入电机名称————根据所设定的“电机型号”值显示名称主轴最高速度(rpm)No.3741设定主轴的最高速度该参数是设定主轴第1挡的最高转速,而非主轴的钳制速度(No.3736)电机最高速度(rpm)No.4020主轴最高速度时对应的主轴电机的速度(rpm)。设定值要等于或低于电机规格的最高速度。主轴编码器种类No.4020#3#2#1#0编码器旋转方向No.4001#40:与主轴相同的方向1:与主轴相反的方向“主轴编码器种类”为位置编码器时显示项目电机编码器种类No.4010#2#1#0电机旋转方向No.4000#00:与主轴相同的方向1:与主轴相反的方向下列情况下显示项目:1、“主轴编码器种类”为位置编码器或接近开关2、没有“主轴编码器种类”,且“电机编码器种类”为MZ传感器接近开关检出边缘No.4004#3#2主轴侧齿轮齿数No.4171设定主轴传动中的主轴侧齿轮的齿数电机侧齿轮齿数No.4172设定主轴传动中的电机侧齿轮的齿数
使用M-CARD备份参数/加工程序使用存储卡(PCMCIA CARD)可对参数、加工程序,梯形图,螺补、宏变量等数据进行方便的备份。这些数据可分别备份,同时可以在计算机上直接进行编辑(梯形图除外,需经FANUC的编程软件进行转换)。1)首先要将20#参数设定为4 表示通过M-CARD进行数据交换 按执行键,即可看到有字符[EXECUTE]闪烁,参数即被保存到M-CARD中。
伴随着社会工业水平的不断发展,五轴精工机床的需求也越来越多,常见的铣削五轴加工中心主要有以下几种:第一种是在立加工作台上装配一个平面回转台,Z轴上装配一个单摆的回转头(一般顺Y方向左右摇摆)运动方向X、Y、Z是直线轴,工作台的回转轴为C轴和Z向的单摆轴B轴。 第二种是3+2五轴加工中心,其结构在原来的立加上装一个双轴回转台,运动方向X、Y、Z是直线轴。双轴回转台顺着X向设计,倾斜轴和旋转轴为A、C轴。顺着Y方向设计回转台,倾斜轴和旋转轴为B、C轴。这两种方式适应于加工叶轮、模具、复杂的五面体等零部件。第三种是在龙门主轴箱上装配一个双摆摇摆头,无论哪种方式,X、Y、Z轴都是直线轴,旋转轴或空间轴为A、B、C轴。第四种结构是摇篮动梁式五轴加工中心,这种结构的比3+2的五轴加工中心加工叶轮更为专业,可以做模具,效率高、精度好、速度快,造价也比较昂贵,运动方向X、Y、Z是直线轴,旋转轴和倾斜轴与3+2五轴加工中心相似为A/C轴或B/C轴。 以上几种机型,都可以实现五轴五联动,但是五轴联动并不是真正的五轴加工中心,只有配上带PTCP功能的精工系统,才是真正的五轴加工中心。
02月24日发往北京HGVC650高速加工中心。发往吉林HQVC1060强力加工中心。
2月26号。27号发往上海HVC650加工中心1台、杭州HVC650加工中心1台、无锡HVC160加工中心1台、吉林HVC850L加工中心1台、这四台加工中心是分别是高精、高速、强力、和加大行程的。
精工机床的应用越来越广泛,其加工柔性好,精度高,生产效率高,具有很多的优点。但由于技术越来越先进、复杂,对维修人员的素质要求很高,要求他们具有较深的专业知识和丰富的维修经验,在精工机床出现故障才能及时排除。下面结合一些典型的实例,对精工机床的故障进行系统分析,以供参考。 一、NC系统故障 1.硬件故障 有时由于NC系统出现硬件的损坏,使机床停机。对于这类故障的诊断,首先必须了解该精工系统的工作原理及各线路板的功能,然后根据故障现象进行分析,在有条件的情况下利用交换法准确定位故障点。 例一、一台采用德国西门子SINUMERIK SYSTEM3的精工机床,其PLC采用S5─130W/B,一次发生故障,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加工程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,我们认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。 例二、另一台机床也是采用SINUMERIK SYSTEM 3精工系统,其加工程序程序号输入不进去,自动加工无法进行。经确认为NC系统存储器板出现问题,维修后,故障消除。 例三、一台采用德国HEIDENHAIN公司TNC 155的精工铣床,一次发生故障,工作时系统经常死机,停电时经常丢失机床参数和程序。经检查发现NC系统主板弯曲变形,经校直固定后,系统恢复正常,再也没有出现类似故障。 2.软故障 精工机床有些故障是由于NC系统机床参数引起的,有时因设置不当,有时因意外使参数发生变化或混乱,这类故障只要调整好参数,就会自然消失。还有些故障由于偶然原因使NC系统处于死循环状态,这类故障有时必须采取强行启动的方法恢复系统的使用。 例一、一台采用日本发那科公司FANUC-OT系统的精工车床,每次开机都发生死机现象,任何正常操作都不起作用。后采取强制复位的方法,将系统内存全部清除后,系统恢复正常,重新输入机床参数后,机床正常使用。这个故障就是由于机床参数混乱造成的。 例二、一台专用精工铣床,NC系统采用西门子的SINUMERIK SYSTEM 3,在批量加工中NC系统显示2号报警“LIMIT SWITCH”,这种故障是因为Y轴行程超出软件设定的极限值,检查程序数值并无变化,经仔细观察故障现象,当出现故障时,CRT上显示的Y轴坐标确定达到软件极限,仔细研究发现是补偿值输入变大引起的,适当调整软件限位设置后,故障被排除。这个故障就是软件限位设置不当造成的。 例三、一台采用西门子SINUMERIK 810的精工机床,一次出现问题,每次开机系统都进入AUTOMATIC状态,不能进行任何操作,系统出现死机状态。经强制启动后,系统恢复正常工作。这个故障就是因操作人员操作失误或其它原因使NC系统处于死循环状态。 3.其他故障 因其它原因引起的NC系统故障有时因供电电源出现问题或缓冲电池失效也会引起系统故障。 例一、一台采用德国西门子SINUMERIK SYSTEM 3的精工机床,一次出现故障,NC系统加上电后,CRT不显示,检查发现NC系统上“COUPLING MODULE”板上左边的发光二极管闪亮,指示故障。对PLC进行热启动后,系统正常工作。但过几天后,这个故障又出现了,经对发光二极管闪动频率的分析,确定为电池故障,更换电池后,故障消除。 例二、一台采用西门子SINUMERIK 810的精工机床,有时在自动加工过程中,系统突然掉电,测量其24V直流供电电源,发现只有22V左右,电网电压向下波动时,引起这个电压降低,导致 NC系统采取保护措施,自动断电。经确认为整流变压器匝间短路,造成容量不够。更换新的整流变压器后,故障排除。 例三、另一台也是采用西门子SINUMIK 810的精工机床,出现这样的故障,当系统加上电源后,系统开始自检,当自检完毕进入基本画面时,系统掉电。经分析和检查,发现X轴抱闸线圈对地短路。系统自检后,伺服条件准备好,抱闸通电释放。抱闸线圈采用24V电源供电,由于线圈对地短路,致使24V电压瞬间下降,NC系统采取保护措施自动断电。 二、伺服系统的故障 由于精工系统的控制核心是对机床的进给部分进行数字控制,而进给是由伺服单元控制伺服电机,带动滚珠丝杠来实现的,由旋转编码器做位置反馈元件,形成半闭环的位置控制系统。所以伺服系统在精工机床上起的作用相当重要。伺服系统的故障一般都是由伺服控制单元、伺服电机、测速电机、编码器等出现问题引起的。下面介绍几例: 例一、伺服电机损坏 一台采用SINUMERIK 810/T的精工车床,一次刀塔出现故障,转动不到位,刀塔转动时,出现6016号报警“SLIDE POWER PACK NO OPERATION”,根据工作原理和故障现象进行分析,刀塔转动是由伺服电机驱动的,电机一启动,伺服单元就产生过载报警,切断伺服电源,并反馈给NC 系统,显示6016报警。检查机械部分,更换伺服单元都没有解决问题。更换伺服电机后,故障被排除。 例二、一台采用直流伺服系统的美国精工磨床,E轴运动时产生“E AXIS EXECESSFOLLOWING ERROR”报警,观察故障发生过程,在启动E轴时,E轴开始运动,CRT上显示的E轴数值变化,当数值变到14时,突然跳变到471,为此我们认为反馈部分存在问题,更换位置反馈板,故障消除。 例三、另一台精工磨床,E轴修整器失控,E轴能回参考点,但自动修整或半自动时,运动速度极快,直到撞到极限开关。观察发生故障的过程,发现撞极限开关时,其显示的坐标值远小于实际值,肯定是位置反馈的问题。但更换反馈板和编码器都未能解决问题。后仔细研究发现,E轴修整器是由Z轴带动运动的,一般回参考点时,E轴都在Z轴的一侧,而修整时,E轴修整器被Z轴带到中间。为此我们做了这样的试验,将E轴修整器移到Z轴中间,然后回参考点,这时回参点也出现失控现象;为此我们断定可能由于E轴修整器经常往复运动,导致E轴反馈电缆折断,而接触不良。校线证实了我们的判断,找到断点,焊接并采取防折措施,使机床恢复工作。 三、外部故障 由于现代的精工系统可变性越来越高,故障率越来越低,很少发生故障。大部分故障都是非系统故障,是由外部原因引起的。 1.精工设备故障发生频率较高 现代的精工设备都是机电一体化的产品,结构比较复杂,保护措施完善,自动化程度非常高。有些故障并不是硬件损坏引起的,而是由于操作、调整、处理不当引起的。这类故障在设备使用初期发生的频率较高,这时操作人员和维护人员对设备都不特别熟悉。 例一、一台精工铣床,在刚投入使用的时候,旋转工作台经常出现不旋转的问题,经过对机床工作原理和加工过程进行分析,发现这个问题与分度装置有关,只有分度装置在起始位置时,工作台才能旋转。 例二、另一台精工铣床发生打刀事故,按急停按钮后,换上新刀,但工作台不旋转,通过PLC梯图分析,发现其换刀过程不正确,计算机认为换刀过程没有结束,不能进行其它操作,按正确程序重新换刀后,机床恢复正常。 例三、有几台精工机床,在刚投入使用的时候,有时出现意外情况,操作人员按急停按钮后,将系统断电重新启动,这时机床不回参考点,必须经过一番调整,有时得手工将轴盘到非干涉区。后来吸取教训,按急停按钮后,将操作方式变为手动,松开急停按钮,把机床恢复到正常位置,这时再操作或断电,就不会出现问题。 2.由外部硬件损坏引起的故障 这类故障是精工机床常见故障,一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置等出现问题引起的。有些故障可产生报警,通过报答信息,可查找故障原因。 例一、一台精工磨床,精工系统采用西门子SINUMERIK SYSTEM 3,出现故障报警F31“SPINDLE COOLANT CIRCUIT”,指示主轴冷却系统有问题,而检查冷却系统并无问题,查阅PLC梯图,这个故障是由流量检测开关B9.6检测出来的,检查这个开关,发现开关已损坏,更换新的开关,故障消失。 例二、一台采用西门子SINUMERIK 810的精工淬火机床,一次出现6014“FAULT LEVEL HARDENING LIQUID”机床不能工作。报警信息指示,淬火液面不够,检查液面已远远超出最低水平,检测液位开关,发现是液位开关出现问题,更换新的开关,故障消除。 有些故障虽有报警信息,但并不能反映故障的根本原因。这时要根据报警信息、故障现象来分析。 例三、一台精工磨床,E轴在回参考点时,E轴旋转但没有找到参考点,而一直运动,直到压到极限开关,NC系统显示报警“EAXIS AT MAX.TRAVEL”。根据故障现象分析,可能是零点开关有问题,经确认为无触点零点开关损坏,更换新的开关,故障消除。 四、一台专用的精工铣床,在零件批量加工过程中发生故障,每次都发生在零件已加工完毕,Z轴后移还没到位,这时出现故障,加工程序中断,主轴停转,并显示F97号报警“SPINDLESPEED NOT OK STATION 2”,指示主轴有问题,检查主轴系统并无问题,其它问题也可导致主轴停转,于是我们用机外编程器监视PLC梯图的运行状态,发现刀具液压卡紧压力检测开关 F21.1,在出现故障时,瞬间断开,它的断开表示铣刀卡紧力不够,为安全起见,PLC使主轴停转。经检查发现液压压力不稳,调整液压系统,使之稳定,故障被排除。还有些故障不产生故障报警,只是动作不能完成,这时就要根据维修经验,机床的工作原理,PLC的运行状态来判断故障。 例五、一台精工机床一次出现故障,负载门关不上,自动加工不能进行,而且无故障显示。这个负载门是由气缸来完成开关的,关闭负载门是PLC输出Q2.0控制电磁阀Y2.0来实现的。用NC系统的PC功能检查PLCQ2.0的状态,其状态为1,但电磁阀却没有得电。原来PLC输出Q2.0通过中间继电器控制电磁阀Y2.0,中间继电器损坏引起这个故障,更换新的继电器,故障被排除。 例六、一台精工机床,工作台不旋转,NC系统没有显示故障报警。根据工作台的动作原理,工作台旋转第一步应将工作台气动浮起,利用机外编程器,跟踪PLC梯图的动态变化,发现PLC这个信号并未发出,根据这个线索继续查看,最后发现反映二、三工位分度头起始位置检测开关I9.7、I10.6动作不同步,导致了工作台不旋转。进一步确认为三工位分度头产生机械错位,调整机械装置,使其与二工位同步,这样使故障消除。 发现问题是解决问题的第一步,而且是最重要的一步。特别是对精工机床的外部故障,有时诊断过程比较复杂,一旦发现问题所在,解决起来比较轻松。对外部故障的诊断,我们总结出两点经验,首先应熟练掌握机床的工作原理和动作顺序。其次要熟练运用厂方提供的PLC梯图,利用NC系统的状态显示功能或用机外编程器监测PLC的运行状态,根据梯图的链锁关系,确定故障点,只要做到以上两点,一般精工机床的外部故障,都会被及时排除。
精工机床功能部件的发展趋势 。 自从世界上第一次出现了计算机起,人们就开始相像把计算机应用于各个领域。1952年开始,机床也进入了精工阶段(精工NC),接着是计算机精工。随着时代的发展,科学技术的进步,人类在精工机床的研究与改进方面也作出了不少的努力,但精工机床是集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品。要在精工技术上有点改进和提高,这就得解决精工机床的基本问题。每台精工机床都是由主要的功能零部件组成的,所以要解决机床个功能部件的发展瓶颈。 精工机床发展的水平高低,其精工机床功能部件起到了极其重要的作用。精工机床功能部件涵盖了众多方面,包括精工系统、刀库、精工刀架和转台、五轴联动摆头,主轴、电主轴、滚珠丝杠副和滚动导轨副、高速防护等。近几年来我国精工机床功能部件的发展取得了极大的进步,功能部件的发展和其专业化生产为机床制造厂提供功能完善、品质优良、运行可靠、结构标准化且性价比合适的选件,缩短机床新产品开发和制造周期,为精工机床的发展奠定了坚实的基础。 五轴联动机床是机床发展的主要趋势,所谓五轴加工这里是指在一台机床上至少有五个坐标轴(三个直线坐标和两个旋转坐标),而且可在计算机精工(CNC)系统的控制下同时协调运动进行加工。对于五轴立式加工来说,必须要有C轴,即旋转工作台,然后再加上一个轴,要么是A轴要么是B轴。对于五轴卧式加工来说,必须要有B轴,即摆动轴,然后再加上一个轴,要么是A轴要么是C轴。五轴联动主要分为:摇篮式、立式、卧式、NC工作台+NC分度头、NC工作台+90度B轴、NC工作台+45度B轴等。五轴联动机床分为,工作台双转动,刀具与工作台分别回转,刀具双摆动三种类型。 国外五轴联动精工机床是为适应多面体和曲面零件加工而出现的。随着机床复合化技术的新发展,在精工车床的基础上,又很快生产出了能进行铣削加工的车铣中心。五轴联动精工机床的加工效率相当于两台三轴机床,有时甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。市场的需求推动了我国五轴联动精工机床的发展,CIMT99 展览会上国产五轴联动精工机床第一次登上机床市场的舞台。自江苏多棱精工机床股份有限公司展出第一台五轴联动龙门加工中心以来,北京机电研究院、北京第一机床厂、桂林机床股份有限公司、济南二机床集团有限公司等企业也相继开发出五轴联动精工机床。当前,国产五轴联动精工机床在品种上已经拥有立式、卧式、龙门式和落地式的加工中心,适应不同大小尺寸的杂零件加工,加上五轴联动铣床和大型镗铣床以及车铣中心等的开发,基本涵盖了国内市场的需求。
数 控 机 床 维 修 与 保 养(5)本机床的操作者必须了解本机床的结构与性能,幷能熟练掌握各操作部分,部件的使用功能及操作方法。维修保养对于机器加工精度、维持机器使用年限是相当重要的。是必须注意的因素。一个好的机床维护,除了在每天启动前做各种检查和确认外,最重要的就是“定期维护保养与清洁”。整齐、清洁、干净的工作环境是维护保养的首要工作,因为所有的脏乱(如灰尘、油污、潮湿)都会导致机器零件与电子接点加速恶化其原有功能,直接影响到机器加工精度与零件使用寿命。实施维护保养之前,须有周详的计划,执行时,要做好各项记录,以供机器零件使用期,及保持备用零件之参考(零件在正常使用下,因其使用次数已达到该零件耐用期,为防止因此零件导致机床加工出的零件超差或导致机床停机而造成损失,必须更换才能保持该零件应有之功能。故该零件必须备用。)。(一) 为了安全起见,所有电器箱,操作箱的门,及保护罩请不要打开,除非是定期做维护保养。(二) 不要使用压缩空气来清理机器和其它各项电子装置,因为周围环境如果有的脏乱(如灰尘、油污、铁屑等)很容易进入轴承、滚珠导螺杆,导致机器零件耐用期缩短。(三) 当维修人员进入机床工作台移动范围内时,请关闭所有操作盘与电器箱上电源开关,请准备一些废弃的硬板纸或木板覆盖在会滑倒的范围,以防止维修人员滑倒。1、 加工精度的维持(1) 作业前须暖机,幷检查应加油处是否该注油。(2) 检查油路畅通否。(3) 关机时,工作台、鞍座应置于机台中央位置(移动三轴行程至各轴行程中间位置)。(4) 每天作业结束时,应做清洁和整理器具。每隔一定的时间(每周、每月)要做周期性的机床检查及保养。(5) 机台保持干燥清洁。(6) 机台须远离震动区,地基要稳固。2、 每日维护保养(1) 清除工作台、机台内,三轴伸缩护罩上的铁屑、油污。(2) 擦拭清洁工作台、机台内,三轴伸缩护罩上的切削油及细小铁屑,幷喷上防锈油。(3) 主轴锥孔必须保持清洁,加工完毕后用主轴锥孔清洁器擦拭。(4) 清洁刀库与刀库座及连杆组,幷喷上一些润滑油。(5) 清洁主轴头上持刀手指轨道,幷涂上一些润滑油。(6) 检查三点组合油杯内油量是否充足,幷释放三点组合空气过滤水分油杯内之水分。(7) 检查三轴自动润滑泵浦是否当电源投入时即开始动作(间歇时间每15分钟,给油量约3~6CC)。(8) 检视三轴自动润滑油量,必要时适量添加。(9) 检视油压单元油管是否有渗漏现象。(10) 清除铁屑承接滤网上的铁屑。(11) 检查切削液油量,必要时添加,检视切削液冲屑水管是否渗漏有现象。(12) 检视全部信号灯,异警警示灯是否正常工作。3、 每周维护保养(1) 检测刀具拉栓是否松动,刀把是否清洁。(2) 清洁主轴内孔是否清洁,锥度研磨面是否有刮痕(如有刮痕,可能是刀具与主轴内孔不清洁所引起)。(3) 检视油压箱油量。(4) 检视循环给油、集中给油之泵浦工作台是否正常。(5) 检测三轴机械原点是否偏移。(6) 清洁切削油箱过滤网。(7) 检视所有散热风扇是否作用。(8) 检视刀具换刀臂之动作是否滑顺。(9) 检视刀库刀盘回转时是否滑顺。4、 每月维护保养(1) 清洁操作面板,电气箱热交换器网。(2) 检测机台水平,确认水平调整螺丝,固定螺帽是否松动。(3) 检测主轴中心与工作台面垂直度。(4) 检测三轴极限,原点微动开关作用是否正常。(5) 清洗切削水箱,清洁切削液和冲屑泵浦。(6) 检测电气箱内部是否有油误,灰尘进入,必要时清洁,幷查明原因。5、 每半年维护保养(1) 清洁CNC控制单元,操作面板。(2) 拆开三轴防屑护罩,清洁三轴油管接头,滚珠导螺杆,三轴极限,原点微动开关,幷检测其作用是否良好。(3) 清洁所有马达。(4) 更换油压单元油压油,ATC减速机构用油。(5) 测试所有马达启动时是否有异常声音。(6) 测试所有电子零件、单元和继电器、强点盘(7) 清洁润滑泵浦和油箱,幷检测内部电路接点。(8) 测试所有各轴背隙,必要时可调整补正量,调整各轴斜楔间隙。(9) 检查和清洁所有散热风扇,检测是否作用良好。(10) 电器箱内部、操作箱内部清洁。(11) 编写测试程序,检测机器各相功能是否正常。(12) 主轴偏摆RUN OUT 幅度是否过大,主轴轴承间隙是否不正常。(13) 检视螺栓或螺帽是否松动。(14) 检视各滑轨润滑脂是否不足。(15) 全面检视各接点、接头、插座、开关是否正常。(16) 全面检视绝缘电阻幷记录。6、 每年维护保养(1) 检查操作面板按键是否灵敏正常。(2) 将电器箱、操作箱内所有继电器接点上之积碳用抹布沾酒精擦拭。(3) 检查平衡锤的链条是否保持正常状态,幷需上润滑油。(4) 清洗切削水箱幷更换同性质切削油。(5) 清洗油压装置,幷更换新油,同时检测所有设定之调整压力是否正常。※在维护保养时,若遇到困难和疑问请致电我公司技术人员。7、 润滑(1) 三轴滚珠导螺杆的润滑,为自动润滑方式(间歇时间每15分钟给油量约3~6CC)。当润滑油箱内之油量不足时ALARM异警讯息产生(Lubricating lacking),此时只要添加适量的润滑油,ALARM即可解除。(2) 当在自动记忆模式下执行程序时,发生上述润滑油的ALARM,程序将执行在该单节后,成为自动暂停状态,将此ALARM解除后,再按下程序自动执行开关(CYCLE START),程序继续执行下一个单节。(3) 依照三点组合油杯针阀,调整油量多寡,定期添加锭油(低粘度油)与空气中的水分混合,达到润滑效果的目的。(4) APC油压箱液压循环油,请依指定规格、厂牌,定期更换(平均半年换一次)。(5) ATC刀库减速机构用油,请依指定规格、厂牌,使用减速机构专用油,定期更换。(约每三年更换一次)(6) 轨道润滑油油箱容量为1.6LITERS,请三天检视添加。(7) 切削冷却液油箱容量为873~1048(齿轮传动1700~2200)LITERS,请每周检视适量添加。(8) 每半年维护保养时,拆开各轴防屑护罩,清洁各轴滚珠导螺杆,幷检查各轴自动润滑供油到滚珠导螺杆情形,也可由各轴润滑部位清洁后,各轴实施全行程,快速移动判断自动润滑供油情形是否良好。 8、 清洁与更换、调整(一) 工作灯灯泡(1) 欲更换灯泡时,将工作灯背盖固定螺丝拆下,取下背盖。(2) 取下灯泡座固定弹簧夹。(3) 卸下灯泡线端子,取出灯泡。(4) 更换新灯泡(规格:12V/55W,24V/60W/70W)。(5) 安装时,依照拆下步骤之反顺序安装。(二) 操作面板按下灯泡(1) 取下按键盖。(2) 逆时针方向,旋转将按键灯泡取出。(3) 更换新灯泡,按照顺序时针方向将灯泡锁紧。(4) 重新盖好按键盖。(三) LED显示灯泡(1) 拆下操作面板固定螺丝,取下操作面板。(2) 准备焊枪插电加热后,点住焊点,取下LED灯泡。(3) 更换新LED灯泡,依拆下之反顺序进行。(4) 焊接LED接脚时,请注意+/-方向。(四) 保险丝:保险丝所在位置为电气箱内和CRT屏幕后方。(1) 关闭总电源开关。(2) 取出失效的保险丝,幷更换新保险丝。(3) 更换新保险丝,请务必使用相同规格保险丝,否则可能失去其原来保护功用。(4) 打开电源开关,幷测试所有机械动作是否正常。(五) 极限开关(LIMIT SWITCH)(1) 每半年维护保养时,必须拆开三轴防屑护罩,清洁三轴滚珠导螺杆,以及三轴极限、原点微动开关,幷检测其作用是否良好。(2) 当发现极限原点微动开关失效的时候,必须更换微动开关。(3) 更换新微动开关之前,请务必记录原本微动开关与碰块接触作用时之动作距离,即当微动开关信号ON/OFF作用之距离。(4) 各轴的微动开关皆固定于微动开关固定钣金上,以内外二个固定螺帽锁紧,请注意固定螺帽锁紧后的位置。(5) 更换后请从PLC/F画面诊断信号,以手轮进给模式,测试各轴原点微动开关信号ON/OFF情形,以及微动开关碰触挡块后之作用距离。(6) 各轴如有更换原点微动开关时,更换后,请重新作机械原点复原后,必须重新校正工件零点到机械原点距离。(六) 过滤网(1) 电气箱上过滤网,请每个月定期维护清洁,可以压缩空气清洁,清洁时请拆下后再实施。(2) 切削液水箱上的铁屑过滤网,每周定期清洁。(七) 冷却风扇(1) 主轴马达冷却风扇,每半年定期清洁,拆开冷却风扇叶片, 擦拭清洁后装回。(八) 电气箱、操作箱内部维护保养清洁(1) 检测保险丝是否BROKEN。(2) 检查电路接头固定螺丝是否松动。(3) 检测变压器是否引起高温。(4) 定期清洁灰尘,切记请勿使用压缩空气清洁。(5) 检视RELAYS接点是否积留太多的灰尘。(九) 立柱上方维修时,维修前先将总电源开关关闭,幷使用梯子攀爬。
(1)FSSB概要通过高速串行伺服总线(FSSB: Fanuc Serial Servo Bus)用一根光缆将CNC控制器和多个伺服放大器进行连接,可大幅减少机床电装所需的电缆,并可提高伺服运行的可靠性。使用FSSB对进给轴控制,需要设定如下的参数。l No.1023l No.1905l No.1936、1937l No.14340~14349,No.14376~14391设定这些参数的方法有如下3种。1、 手动设定1通过参数No.1023进行默认的轴设定。由此就不需要设定参数(No.1905,No.1936、1937,No.14340~14349,No.14376~14391),也不会进行自动设定。应注意的是,有的功能无法使用。2、 自动设定利用FSSB设定画面,输入轴和放大器的关系,进行轴设定的自动计算,即自动设定参数(No.1023,No.1905,No.1936、1937,No.14340~14349,No.14376~14391)。3、 手动设定2直接输入所有参数(No.1023,No.1905,No.1936、1937,No.14340~14349,No.14376~14391)。(2)解释l 从控装置使用FSSB的系统,通过光缆连接CNC和伺服放大器以及分离式检测器接口单元。这些放大器和分离式检测器接口单元叫做从控装置。2轴放大器由2个从控装置组成,3轴放大器则由3个从控装置组成。从控装置上,按照离CNC由近到远的顺序对FSSB赋予1,2,…10的编号(从控装置号)。